2,762 research outputs found

    Fostering collaborative research for rare genetic disease: The example of Niemann-Pick type C disease

    Get PDF
    Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the “SOAR” mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders

    A Cell-Based β-Lactamase Reporter Gene Assay for the CREB Signaling Pathway

    Get PDF
    The Cyclic-AMP Response Element Binding (CREB) proteins comprise a family of transcription factors that stimulate or repress the expression of a wide variety of genes by binding to nucleotide sequences known as cAMP Response Elements. CREB-mediated transcription has been implicated in a wide variety of important physiological processes, including long-term memory, and enhancement of CREB signaling has been suggested as an attractive therapeutic strategy for human memory disorders. To identify small molecule compounds that enhance CREB pathway signaling, we have optimized and validated a cell-based β-lactamase reporter gene CREB pathway assay in 1536-well plate format. The LOPAC library of 1280 compounds was screened in triplicate in this assay on a quantitative high throughput screening (qHTS) platform. A variety of compounds which affect known members of the CREB pathway were identified as active, including twelve known phosphodiesterase (PDE) inhibitors, and forskolin, a known activator of adenylate cyclase, thus validating the assay’s performance. This qHTS platform assay will facilitate identification of novel small molecule CREB signaling enhancers, which will be useful for chemical genetic dissection of the CREB pathway and as starting points for potentially memory-enhancing therapeutics

    A homogeneous method for investigation of methylation-dependent protein–protein interactions in epigenetics

    Get PDF
    Methylation of lysine residues on the tails of histone proteins is a major determinant of the transcription state of associated DNA coding regions. The interplay among methylation states and other histone modifications to direct transcriptional outcome is referred to as the histone code. In addition to histone methyltransferases and demethylases which function to modify the methylation state of lysine sidechains, other proteins recognize specific histone methylation marks essentially serving as code readers. While these interactions are highly specific with respect to site and methylation state of particular lysine residues, they are generally weak and therefore difficult to monitor by traditional assay techniques. Herein, we present the design and implementation of a homogeneous, miniaturizable, and sensitive assay for histone methylation-dependent interactions. We use AlphaScreen, a chemiluminescence-based technique, to monitor the interactions of chromodomains (MPP8, HP1β and CHD1), tudor domains (JMJD2A) and plant homeodomains (RAG2) with their cognate trimethyllysine histone partners. The utility of the method was demonstrated by profiling the binding specificities of chromo- and tudor domains toward several histone marks. The simplicity of design and the sensitive and robust nature of this assay should make it applicable to a range of epigenetic studies, including the search for novel inhibitors of methylation-dependent interactions

    Nanopore long-read guided complete genome assembly of Hydrogenophaga intermedia, and genomic insights into 4-aminobenzenesulfonate, p-aminobenzoic acid and hydrogen metabolism in the genus Hydrogenophaga

    Full text link
    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria.&quot

    Comparison on Functional Assays for Gq-Coupled GPCRs by Measuring Inositol Monophospate-1 and Intracellular Calcium in 1536-Well Plate Format

    Get PDF
    Cell-based functional assays used for compound screening and lead optimization play an important role in drug discovery for G-protein coupled receptors (GPCRs). Cell-based assays can define the role of a compound as an agonist, antagonist or inverse agonist and can provide detailed information about the potency and efficacy of a compound. In addition, cell-based screens can be used to identify allosteric modulators that interact with sites other than the binding site of the endogenous ligand. Intracellular calcium assays which use a fluorescent calcium binding dye (such as Fluo-3, Fluo-4 or Fura-2) have been used in compound screening campaigns to measure the activity of Gq-coupled GPCRs. However, such screening methodologies require a special instrumentation to record the rapid change in intracellular free calcium concentration over time. The radioactive inositol 1,4,5- triphosphate (IP3) assay measures 3H-inositol incorporation and is another traditional assay for the assessment of Gq-coupled GPCR activity, but it is not suitable for screening of large size compound collections because it requires a cell wash step and generates radioactive waste. To avoid these limitations, we have optimized and miniaturized a TR-FRET based IP-One assay that measures inositol monophosphate in a 1536-well plate format. This assay is homogenous, non-radioactive and does not require a kinetic readout. It has been tested with the cell lines expressing M1 acetylcholine, FFAR1, vasopressin V1b, or Neuropeptide S receptors. The activities of antagonists determined in the IP-One assay correlated well with these measured in the intracellular calcium assay while the correlation of agonist activities might vary from cell line to cell line. This IP-One assay offers an alternative method for high throughput screening of Gq-coupled GPCRs without using costly kinetic plate readers

    Diversity and distribution of Symbiodiniaceae detected on coral reefs of Lombok, Indonesia using environmental DNA metabarcoding

    Get PDF
    Background Dinoflagellates of family Symbiodiniaceae are important to coral reef ecosystems because of their contribution to coral health and growth; however, only a few studies have investigated the function and distribution of Symbiodiniaceae in Indonesia. Understanding the distribution of different kinds of Symbiodiniaceae can improve forecasting of future responses of various coral reef systems to climate change. This study aimed to determine the diversity of Symbiodiniaceae around Lombok using environmental DNA (eDNA). Methods Seawater and sediment samples were collected from 18 locations and filtered to obtain fractions of 0.4–12 and \u3e12 µm. After extraction, molecular barcoding polymerase chain reaction was conducted to amplify the primary V9-SSU 18S rRNA gene, followed by sequencing (Illumina MiSeq). BLAST, Naïve-fit-Bayes, and maximum likelihood routines were used for classification and phylogenetic reconstruction. We compared results across sampling sites, sample types (seawater/sediment), and filter pore sizes (fraction). Results Phylogenetic analyses resolved the amplicon sequence variants into 16 subclades comprising six Symbiodiniaceae genera (or genera-equivalent clades) as follows: Symbiodinium, Breviolum, Cladocopium, Durusdinium, Foraminifera Clade G, and Halluxium. Comparative analyses showed that the three distinct lineages within Cladocopium, Durusdinium, and Foraminifera Clade G were the most common. Most of the recovered sequences appeared to be distinctive of different sampling locations, supporting the possibility that eDNA may resolve regional and local differences among Symbiodiniaceae genera and species. Conclusions eDNA surveys offer a rapid proxy for evaluating Symbiodiniaceae species on coral reefs and are a potentially useful approach to revealing diversity and relative ecological dominance of certain Symbiodiniaceae organisms. Moreover, Symbiodiniaceae eDNA analysis shows potential in monitoring the local and regional stability of coral–algal mutualisms

    Longitudinal genetic analyses of Staphylococcus aureus nasal carriage dynamics in a diverse population

    Get PDF
    Background: Staphylococcus aureus (SA) nasal colonization plays a critical role in the pathogenesis of staphylococcal infections and SA eradication from the nares has proven to be effective in reducing endogenous infections. To understand SA nasal colonization and its relation with consequent disease, assessment of nasal carriage dynamics and genotypic diversity among a diverse population is a necessity. Results: We have performed extensive longitudinal monitoring of SA nasal carriage isolates in 109 healthy individuals over a period of up to three years. Longitudinal sampling revealed that 24% of the individuals were persistent SA nasal carriers while 32% were intermittent. To assess the genetic relatedness between different SA isolates within our cohort, multi locus sequence typing (MLST) was performed. MLST revealed that not only were strains colonizing intermittent and persistent nasal carriers genetically similar, belonging to the same clonal complexes, but strain changes within the same host were also observed over time for both types of carriers. More highly discriminating genetic analyses using the hypervariable regions of staphylococcal protein A and clumping factor B virulence genes revealed no preferential colonization of specific SA strains in persistent or intermittent carriers. Moreover, we observed that a subset of persistent and intermittent carriers retained clinically relevant community-acquired methicillin-resistant SA (CA-MRSA) strains in their nares over time. Conclusions: The findings of this study provides added perspective on the nasal carriage dynamics between strains colonizing persistent and intermittent carriers; an area currently in need of assessment given that persistent carriers are at greater risk of autoinfection than intermittent carriers
    • …
    corecore